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I t  is shown that for H2 + and H 2 an atomic orbital exponent ~ chosen from the condition 
L1T = - AEobs. gives calculated total energies which are insignificantly different from those 
obtained using a ~ obtained through a variational treatment. A scheme is proposed in which 
the atomic orbital exponents of z-electron molecular orbitals are taken to be a function of the 
orbital energies, such that these molecular orbitals qualitatively satisfy the virial theorem. 

Es wird gezeigt, dal~ ffir H2 + und H 2 ein Atomorhital-Exponent 4, der entsprcchend der 
Bedingung A T = - AEob~. gew~hlt wurde, zu Gesamtenergicn ffihrt, die nur unwescntlich yon 
jenen abweichen, die man nach der Variations-~ethode crh/~It. Es wird ein Verfahren vor- 
geschlagen, in welchem der Exponent ~ der Atomorbitale eines ~-Elcktronensystems als Funk- 
tion der Orbitalenergien angesetzt wird, so daf3 diese Orbitale dem Virial Theorem qualitativ 
genfigen. 

On montre quc l'exposant ~ que 1'on choisit pour les orbitales atomiqucs de H~ + et t t  2 en 
sc servant de la condition A T = - AEob~. diff~re d'une fagon insignifiante de celui calcul6 par 
la m6thode variationclle. On propose un proc6d6 dans lcquel les exposants $ des orbitales 
atomiques de systbmes z sont fonction de l'6ncrgie des orbitalcs mol6culaires de manibre que 
le th6or~me du viricl est qualitativemcnt satisfait. 

Introduction 

F o r  a sys tem of  par t ic les  in  equi l ibr ium,  which are in te rac t ing  b y  Coulomb 
forces, the  t o t a l  energy re la t ive  to  the  energy of the  par t ic les  inf in i te ly  s epa ra t ed  
from one ano ther  is equal  to  the  negat ive  of  the  k inet ic  energy or ha l f  the  po ten t i a l  
energy. This is a special case of  the  v i r ia l  t heorem which is va l id  for classical and  
quan tum mechanica l  systems.  

- E  = ~ ,  E = V/2. (t) 

LSwDI~ has  wr i t t en  a comprehensive  review on the  vir ia l  theorem in q u a n t u m  
mechanics  and  a b ib l iog raphy  of  ear ly  work  is g iven there in  [d]. 

The descr ip t ion  of  the  electronic s ta tes  of  a toms  based  on a tomic  orbi~als is a t  
least  qua l i t a t ive ly  compat ib le  wi th  the  v i r ia l  theorem.  Al though  the  energy of an 
a tomic  orb i ta l  is not  precisely  defined, one can say  roughly  t h a t  the  higher  the  
energy of  an  a tomic  orbi ta l ,  the  larger  the  orb i ta l  and  the  lower i ts  associated kinet-  
ic energy.  I n  the  LCAO molecular  o rb i ta l  theory ,  however,  one usual ly  t akes  a 
basis of  a tomic  orbi ta ls  of  the  separa ted  a toms  which is the  same for all the  molec- 
ular  orbi tals .  F o r  a small  basis set i t  is no t  clear t h a t  th is  satisfies the  virial  
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theorem. I f  one writes a molecular olbital in the form 

then should the size of the orbital ~0, depend on the energy of ~r, and if so how 
sensitive is the size to the energy ? In  addition, could such an effect be introduced 
into the calculation without  making the mathemat ics  too complicated ? These are 
the questions we shall examine in this paper. 

H + a n d  H ~  

As an introduct ion we first look at H + and H 2. I t  is well known tha t  a LCAO 
wave function based on hydrogen is orbitals does not  satisfy the virial theorem 
unless orbital contract ion is allowed for [8, 9]. Thus for a wave function 

_ 1  
w = (2 + 2s)  2 (Is~ + lsb) (2) 

1 

where lsa ~ (~a/7~)2 e-~r~ and S is the overlap integral between the two orbitals at 
distance R, one finds (@ = ~ R) 

-- tl)~@ A T - ($~ - t) [I + ~-~ (1 + 5)] - ($5 1 ~. e-o 
2 [~ + ~-o (1 + .o + -~ ~)] (3) 

( 1(_: ) ] 
- ~ t + - -  + I e -~-° + 2 ( 1  + o) e-~ 

2-]7 o = i + e '~ (V+ o ~  -~- ~) + I (4) 

for the average kinetic and potential  energies relative to those for infinitely sepa- 
rated nuclei. 

I f  no orbital contract ion is allowed for (~ = l) then  it can be seen tha t  d T is 
negative, for all internuclear distances whereas from the virial theorem we know 
it must  be positive at  the equilibrium separation. 

By  the variat ion principle the best value of ~ has been found to be 1.239 at the 

observed internuclear distance of R = 2%. Fig. i shows the values of - -  zJ V, z] T, 

- - ~ E  and A V + 2 z] T for ~ in the range 1.23 to 1.26. I t  is seen tha t  whereas z] V, 

A T and A V + 2 zJ T are varying quite rapidly in this region zJE is varying very 
slowly and is an insensitive test of the best ~. Applying the virial condition to this 

wave function (A V + 2 zJ T -- 0) at 2% gives the solution ~ = i.238. (By Foc~z's 
scaling theorem they  would coincide if the energies were evaluated for t ha t  inter- 
nuclear distance which gives the minimum energy for this wave function [2, 4].) 

Since the kinetic energy is much easier to calculate than  the tota l  energy one 
is tempted  to use the virial theorem rather  than  the variat ion principle to obtain 

good wave functions. For  example, if one chooses ~ such tha t  zJ 5f' = - -  Eobs. (which 
an exact  calculation for I t  + gives as 0.t026 a.u.) then one obtains ~ = t.255. Fig. i 
shows tha t  the energy calculated using this value is insignificantly worse than  
tha t  obtained using the variat ion principle. 

I t  might  be argued tha t  the reason for the satisfactory result for H + is tha t  the 
molecular orbital wave function is close to an exact  wave function in this case. 
However,  Fig. 2 shows the corresponding results for He, where due to the under- 
estimation of electron correlation, the MO function is not  very good. Nevertheless, 

the ~ obtained by  equating - - A  T to the observed, energy is still close to t ha t  
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obtained by the variation principle, and the calculated energy is insignificantly 
worse. 

Thus for the two cases we have considered, a wave function can be obtained 

from the condition A T = - -  Eobs. which gives as good energies as that obtained 

from the variation principle, although the virial theorem in the form 2 A Tcale. -k 

A Vea~c. = 0 is not satisfied so well (e. f. appendix). 
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Fig. 1 Fig. 2 

Fig. 1. t Iydrogeu molecule ion H~÷. ~ = Energy in atomic units, I :  ~-value for which zI V -k 2 A T = 0, I I :  ~-value 

f o r  which A T = A E o b s ,  (I~ the range indicated,  ~he value of  A E  changes only in  the four th  decimal) 

Fig. 2. Hydrogen molecule H2. s = Energy in atomic units, I :  ges~ S-value according to var ia t ional  principle, 

I I :  ~-value for which A T = - -  A E o b s  

Application of the virial theorem to ~-eleetron systems 

Although the satisfaction of the virial theorem is a necessary condition for an 
exact solution of the Schrbdinger equation i~ is not sufficient for, by Fock's sealing 
theorem, even poor wave functions can be made to satisfy it. 

For the heteronuclear molecules the orbital exponents of each atomic orbital 
in the basis can by the variation principle be varied to obtain a unique energy 
minimum. The virial theorem, however, will only be sufficient to determine the 
best value of one of these exponents for chosen values of all others. At the present 
time we have insufficient information from variation calculations to suggest how 
the exponents should vary for heteronucleal systems. 

7* 
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I t  is therefore only for homonuclear molecules tha t  the virial theorem may  be 
a useful method of determining orbital exponents. In  this class one might include 
the ~r-eleetron systems of conjugated hydrocarbons. MUgAI [6] has calculated the 
energies of different electronic states of ethylene assuming the ~-electron core to 
be fixed and the ~-electron molecular orbitals to be based on atomic orbitals with 
orbital exponents which were optimized for each state. Although this approach 
is incomplete in the sense of having invariant ~-orbital exponents, it nevertheless 
would seem to be a useful extension of the usual 7~.eleetron theory. Moreover, it 
is consistent with the deduction, from the vibrational fine structure of ~-~*- 
absorption bands that  excitation of the ~-electrons does not lead to an overall 
expansion of the molecule [5] ; which is what is to be expected if this excitation 
were accompanied by  a-electron expansion. 

Let us first consider Hiickel orbitals, written as 

# 

These are eigenfunctions of a Hamiltonian matr ix  having a constant element 
on the diagonal, and a constant element fi on the off diagonal elements Hz, when 
# and v are bonded together. The eigenvalues Er of this matr ix  are related to the 
set of values which are eigenvahies of the topological matr ix  having i in positions 
where there are/~ in the Hiickel matrix~ and zero elsewhere: 

m = (~ - -  E)/fi .  (6) 

In  the ttfickel scheme all off diagonal elements of the overlap matr ix  are put  
equal to zero. In  the Wheland scheme they are put  equal to S for all bonded pairs 
of atoms. ~owever,  the orbitals given in the Wheland scheme only differ by  a 
normalising factor from the I-Itickel orbitals, since the parameter  m is redefined as 

m = ( ~  - E ) / ( #  - -  E S )  (7)  

or  

t~--  a - m f l  
I - ~ n S  ( S )  

In  generM we can say that  the set of orbitals 

~r = Nr ~ Or. ~v~ 
# 

are non interacting in the Hfickel scheme (Nr = l) and in the Wheland scheme 

( N r =  ( l -  mrS) -½-) .  That  is, for r ~  s 

g #-0~ 

But, from the orthogonality of the I-tiiekel orbitals 

g 
hence 

v--+It 

I f  we now define integrals of kinetic energy by  

= <~. l -  ~ v ~ [~> (i2) 
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and take all integrals between non bonded atoms equal to zero, then the orbitals 
(8) will also be eigenfunctions of the kinetic energy matrix, and, drawing the 
analogy between g and r, fi and co we can see from (8) 

t - m~S 

(where S is put equal to zero for the Hfickel scheme). 
We can now ask whether the virial theorem is satisfied for this set of orbitals. 

That  is, if  we assume tha t  there exist states of the hydrocarbon which differ only 
in the allocation of electrons to the g-orbitals and which have the same unchanged 
a-electron structure and nuclear structure, then we should find that  the kinetic 

energy Tr decreases as r increases. 
I f  we evaluate co for Slater type 2p7~ atomic orbitals with exponential factor 

one finds [7] : 

< 2 p ~  [ -  ½ v ~ 12p~>  = - 1 ~ { s -  ~ ' } ,  (14) 

where S is the overlap integral between the two orbitals, and S'  is proportional to 
the overlap integral between a 2pz  and a Slater-type lp~  orbital, as defined by 
ROOTHAAN [7] : 

S '  

These overlap integrals have the form (@ = ~ R) 

S' = 2 [i + @ + ½@~] e-~ (16) 

so tha t  

c o = ½  ~ ( l + e + ~ @  - - ~  @3) e-~ . (t7) 

For @ less than 6.6 (for C-C bonds @ is in the range 4 -  4.5) ¢o is positive, which 
means that  the Hfickel scheme satisfies the virial theorem at least qualitatively, 

Tr decreasing with growing quantum number r, i. e. with increasing Er. However, 
from expression (i4) it is clearly inconsistent to put S = 0 in a Hfickel scheme and 
yet not take ¢o to be zero. 

In  the Wheland scheme we have for small values of mr that  mr S < t and 
therefore we can approximate (13) by  

'~,.  = - ~ - -  rn~ (co - ~S) . (ts) 
has the value ½ 2 2, hence 

- 4 2 
co - -  v S  = ½ ~2 (S '  - -  2 S )  = ~ f f - @ ~  ( l  ÷ @ )  e - ~ .  (19)  

co - -  ~ S is now negative for all values of @, hence Tr increases as the energy of the 
orbitals increases - -  which is in violation of the virial theorem. I f  one calculates 
the energies of z-molecular orbitals according to an independent electron scheme 
without neglect of overlap, one finds as for the H a and H + system, tha t  if  all 
exponents are kept constant, then the kinetic energy associated with an orbital 
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increases as the energy of the orbital increases. For II 2 and II + this fault can be 
remedied by contracting the bonding orbitals and expanding the antibonding. 
Can one introduce a similar variation of ~,molecular orbitals which will likewise 
bring the system into line with the virial theorem ? 

The simplest approach is to allow the exponent of the atomic orbitals G to 
depend on the nature of the molecular orbital Fr, but still take all the 9vr to be 
identical. The 0¢ and fl will be functions of r and 8 and (9) will become 

lu ) 

However, since ~rs and firs are independent of~t and v we have from (10) and (ii) 

<~r l J~ I~> = 0° (2~) 

It follows that even if we allow for the size of the atomic orbitals ~r to be a func- 
tion of r, the set of orbitals (8) will still be noninteracting. 

In order to have some idea as to how much the orbital exponents should vary 
with mr we will assume that the ~ appropriate for a molecular orbital Fr is a linear 

function of mr 

Gr ~ Co - -  lcmr. (22) 

The expression for ~'r can then  be expanded as a power series in /~  anal to first 
order one finds 

~5 (e~ - -  4 eo - -  4) (23) 

w h e r e  T o is the kinetic energy evaluated with k = 0 and o o = Go R. Taking Go = 
i.625, R = i .4  ~ one finds 

T ~° = ~°~ ~ + 0 . t 7 s  ~ )  (24) 
2 "  

and tha t  the th i id  te rm in (23) is small compared with the second. I t  follows tha t  
we have 

- ~] 
Tr = ~ + (o .os9  Go ~ - -  ~ Go) m r .  (25) 

We now evaluate k by  making the decrease in  kinetic energy for the excitat ion 
from the highest occupied molecular orbital  ~f~ to the lowest vacant  molecular 
orbital  ~o_ 1 of aromatic hydrocarbons,  equal to the energy of the 1 L  a band.  A 
linear correlation has been found between the energy of this band  and  the differ- 
ence in Hiickel energies which has the form 

AEobs. = A ÷ B (m_ 1 - -  ml) (26) 

where B = 2.19.i04 cm -1 = 0.10i a.u. and where A is small [3]. 
Our calculated decrease in  kinetic energy is 

T-~ - -  T--_~ = (0.089 G~ - -  k Go) (m~ - -  m_~) (27) 

which means  tha t  the virial theorem would hold for 

Go (k - -  0.089 Go) = 0.i01 (28) 

where k = 0.207 . 
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F o r  example ,  for the  1La band  of naph tha lene  (36400 em -1) one would have 
exc i ta t ion  from a bonding  orb i ta l  YJ1 with  $1 = t .753 to  an an t ibonding  orb i ta l  
~-1, wi th  $-1 = i.497. 

The value of  k is sufficiently small  for the  app rox ima t ion  of  the  g / i c k e l  or 
W h e l a n d  model  of only  considering neares t  ne ighbour  in te rac t ions  to  be valid.  
F o r  example ,  the  most  an t ibond ing  orbi ta ls  have m ~ 2.5 and for these we would 
have ~ ~ i . L  

A fur ther  conclusion is t h a t  any  correla t ion which is found be tween Hfickel  
energies and  some observed q u a n t i t y  (e. g. spectroscopic energies, po]arographic  
reduc t ion  potent ia ls ,  resonance energies) would still  be va l id  for calculat ions 
based  on orbi ta ls  wi th  var iable  exponents  according to  the  scheme we have  
suggested.  F o r  example ,  suppose one relates  some observed energy to  the  difference 
of energies ca lcula ted  according to the  H/iekel  independen t  e lectron model .  Then 

E o b s . : E r - - E s = - - ( m r - m s ) / ~ .  

I n  the  W h c l a n d  scheme this  becomes for m S  < l 

and  i f  the  l inear  re la t ionship  is found between Eobs. and  the  I t f iekel  energies i t  will 
also be found be tween Eobs. and  the  Whe land  energies. Likewise ff one expands  
~r, fir and  Sr in the  scheme we suggest,  

Sr : S O + S 1 kmr 
then 

E o b s .  : - -  ( m r  - -  m s )  ([~o - -  °¢o So - -  ~1 ]c) 

plus smal ler  terms.  I n  o ther  woIds,  the  fact  t h a t  there  are good correlat ions 
between some exper imenta l  resul ts  and  theore t ica l  energies based  on fixed a tomic  
orbi ta ls  is not  evidence agains t  orb i ta l  expansion in the  manner  we have  suggested.  
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Appendix 
The raison d'etre of the covalent bond has often been attributed, on the basis of the 

"particle-in-a-box" model to a reduction in kinetic energy. Although the virial theorem shows 

Table I 

Separate atoms 0.17 0.17 0.50 
Ground state $ = I 0A5 0.09 0.39 
Excited state a) $ = I 0.24 0.46 0.94 
Ground state b~ ~ = 1.25 0.23 0.14 0.60 
Excited state S)b) ~ = 0.90 0.21 0.41 0.81 

1 
~) ~ = (2 - 2S)~(ls~ - lsb). 
~ Deduced by the variation method for/~ = 2 a.u. 
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that  this interpretation is incorrect*, the model has some validity as one can see by evMuating 
the three components of the kinetic energy for the tt~ wave function. Tab. I shows the values 
of the component along the internuclear axis (~7) and at right angles to this (T-~ = ~y) for 
both the ground and excited state wave functions, with and without variable $. 

Thus along the internuclear axis the kinetic energy is less than for separate atoms, as one 
would surmise from the "particle-in-a-box" model, but  for the ground state this is offset when 
orbital contraction is allowed for by  an increase perpendicular to this ~xis. (Further details 
shall be published elsewhere [•]). 

* ~VEDEI~I'BERG has given a very detailed account of the changes in kinetic and potential 
energies which accompany bond formation [8]. 
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