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It is shown that for Hy"and H, an atomic orbital exponent & chosen from the condition

AT = — ABows. gives caloulated total energies which are insignificantly different from those
obtained using a & obtained through a variational treatment. A scheme is proposed in which
the atomic orbital exponents of zn-electron molecular orbitals are taken to be a function of the
orbital energies, such that these molecular orbitals qualitatively satisfy the virial theorem.

Es wird gezeigt, dal fiir Hy*und H, ein Atomorbital-Exponent £, der entsprechend der

Bedingung AT = — AFovs. gewihlt wurde, zu Gesamtenergien fiithrt, die nur unwesentlich von
jenen abweichen, die man nach der Variations-Methode erhélt. Es wird ein Verfahren vor-
geschlagen, in welchem der Exponent & der Atomorbitale eines z-Elektronensystems als Funk-
tion der Orbitalenergien angesetzt wird, so daB diese Orbitale dem Virial Theorem qualitativ
gentigen.

On montre que ’exposant & que 1’on choisit pour les orbitales atomiques de Hy,* et H, en

se servant de la condition 47T = — A Ko, différe d’une fagon insignifiante de celui calculé par
la méthode variationelle. On propose un procédé dans lequel les exposants & des orbitales
atomiques de systémes 7z sont fonction de I’énergie des orbitales moléculaires de maniére que
le théoréme du viriel est qualitativement satisfait.

Introduction

For a system of particles in equilibrium, which are interacting by Coulomb
forces, the total energy relative to the energy of the particles infinitely separated
from one another is equal to the negative of the kinetic energy or half the potential
energy. This is a special case of the virial theorem which is valid for classical and
quantum mechanical systems.

—E=T, E=7V]2. (1)
Lowpin has written a comprehensive review on the virial theorem in quantum
mechanics and a bibliography of early work is given therein [4].

The description of the electronic states of atoms based on atomic orbitals is at
least qualitatively compatible with the virial theorem. Although the energy of an
atomie orbital is not precisely defined, one can say roughly that the higher the
energy of an atomic orbital, the larger the orbital and the lower its associated kinet-
ic energy. In the LCAO molecular orbital theory, however, one usually takes a
basis of atomie orbitals of the separated atoms which is the same for all the molec-
ular orbitals. For a small basis set it is not clear that this satisfies the virial
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theorem. If one writes a molecular orbital in the form
Yr = 2, Cru Pu »
u“

then should the size of the orbital ¢, depend on the energy of yy, and if so how
sensitive is the size to the energy ? In addition, could such an effect be introduced
into the calculation without making the mathematics too complicated ? These are
the questions we shall examine in this paper.

H and H,

As an introduction we first look at HF and H,. It is well known that a LCAO
wave function based on hydrogen 1s orbitals does not satisfy the virial theorem
unless orbital contraction is allowed for [&, 91. Thus for a wave function

—1
w=(2+28) 2 (ls;+ 1sp) (2)
1
where 1sq = (£3/7)2 e« and § is the overlap integral between the two orbitals at
distance R, one finds (g = & R)

E-D+etl+0]- (@ +1)Fe e

AT == 2[1 +e2(1 +9 + %0Y] )

—5{1 +-1—7 (—1- + 1)6‘29+2(1 +g)e“9}
9 4

AV = +1 4

Lroedigidey
for the average kinetic and potential energies relative to those for infinitely sepa-
rated nuclei.

If no orbital contraction is allowed for (& = 1) then it can be seen that AT is
negative, for all internuclear distances whereas from the virial theorem we know
it must be positive at the equilibrium separation.

By the variation principle the best value of £ has been found to be 1.239 at the
observed internuclear distance of R = 2a,. Fig. 1 shows the values of — AV s LTQT,
—AE and AV +2 AT for & in the range 1.23 to 1.26. It is seen that whereas Z]_I—i,
AT and AV + 2 AT are varying quite rapidly in this region A% is varying very
slowly and is an insensitive test of the best £. Applying the virial condition to this
wave function (LTV + 24T = 0) at 2a, gives the solution & = 1.238. (By Focr’s
scaling theorem they would coincide if the energies were evaluated for that inter-
nuclear distance which gives the minimum energy for this wave function [2, 4].)

Since the kinetic energy is much easier to calculate than the total energy one
is tempted to use the virial theorem rather than the variation prineciple to obtain
good wave functions. For example, if one chooses & such that AT = — Eops. (which
an exact calculation for Hi gives as 0.1026 a.u.) then one obtains & = 1.255. Fig. 1
shows that the energy calculated using this value is insignificantly worse than
tkat obtained using the variation principle.

It might be argued that the reason for the satisfactory result for Hy is that the
molecular orbital wave function is close to an exact wave function in this case.
However, Fig. 2 shows the corresponding results for H,, where due to the under-
estimation of electron correlation, the MO function is not very good. Nevertheless,
the & obtained by equating — AT to the observed energy is still close to that
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obtained by the variation principle, and the calculated energy is insignificantly
worse.
Thus for the two cases we have considered, a wave function can be obtained

from the condition AT = — B ops, which gives as good energies as that obtained
from the variation prineciple, although the virial theorem in the form 2 AT ca10. +
AV eaie. = 0 is not satisfied so well (c. f. appendix).
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Fig. 1. Hydrogen molecule ion Hy+. & = Energy in atomic units, I &-value for which ar + ZA_Z-’ = 0, II: &-value
for which A7 = AEqps, (In the range indicated, the value of 4E changes only in the fourth decimal)

Fig. 2. Hydrogen molecule H,. ¢ = Energy in atomic units, I: Best §-value according to variational principle,
II: &-value for which 47" = — AEous

Application of the virial theorem to sr-electron systems

Although the satisfaction of the virial theorem is a necessary condition for an
exact solution of the Schrédinger equation it is not sufficient for, by Fock’s scaling
theorem, even poor wave functions can be made to satisfy it.

For the heteronuclear molecules the orbital exponents of each atomic orbital
in the basis can by the variation principle be varied to obtain a unique energy
minimum. The virial theorem, however, will only be sufficient to determine the
best, value of one of these exponents for chosen values of all others. At the present
time we have insufficient information from variation calculations to suggest how
the exponents should vary for heteronuclear systems.

7%
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It is therefore only for homonuclear molecules that the virial theorem may be
a useful method of determining orbital exponents. In this class one might include
the m-electron systems of conjugated hydrocarbons. Murart [6] has calculated the
energies of different electronic states of ethylene assuming the g-electron core to
be fixed and the m-electron molecular orbitals to be based on atomic orbitals with
orbital exponents which were optimized for each state. Although this approach
is incomplete in the sense of having invariant g-orbital exponents, it nevertheless
would seem to be a useful extension of the usual m-electron theory. Moreover, it
is consistent with the deduction, from the vibrational fine structure of m-m*-
absorption bands that excitation of the s;-electrons does not lead to an overall
expansion of the molecule [§]; which is what is to be expected if this excitation
were accompanied by o-electron expansion.

Let us first consider Hiickel orbitals, written as

Yr= 2 Cry QPu - (5)
n

These are eigenfunctions of a Hamiltonian matrix having a constant element
on the diagonal, and a constant element § on the off diagonal elements H,, when
u and v are bonded together. The eigenvalues K, of this matrix are related to the
set of values which are eigenvalues of the topological matrix having 1 in positions
where there are § in the Hiickel matrix, and zero elsewhere:

m=(x—E)f. (6)
In the Hiickel scheme all off diagonal elements of the overlap matrix are put
equal to zero. In the Wheland scheme they are put equal to § for all bonded pairs

of atoms. However, the orbitals given in the Wheland scheme only differ by a
normalising factor from the Huckel orbitals, since the parameter m is redefined as

m = (x — B)|(f — ES) (7)
or
o —mf
B= —-. (8)

In general we can say that the set of orbitals
vr= Ny 2 tru gy
w
are non interacting in the Hiickel scheme (N, = 1) and in the Wheland scheme

—1
(Nr = (1 —myS) 2) . That is, for r=£ s

<Wl°7f‘!"/’8>:NTNS‘ZCMGSM“+Z ZCWCSvﬁ} =0. 9)
u oy
But, from the orthogonality of the Hiickel orbitals
2 CruCsu =0 (10)
“
hence
Z Z CTM Csp == O . (11)
u v

If we now define integrals of kinetic energy by

T=<(pﬂl—%‘72‘¢ﬂ>
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and take all integrals between non bonded atoms equal to zero, then the orbitals
(8) will also be eigenfunctions of the kinetic energy matrix, and, drawing the
analogy between « and 7, f§ and w we can see from (8)

T oo
U1 "m s

(13)

(where S is put equal to zero for the Hiickel scheme).

We can now ask whether the virial theorem is satisfied for this set of orbitals.
That is, if we assume that there exist states of the hydrocarbon which differ only
in the allocation of electrons to the s-orbitals and which have the same unchanged
o-electron structure and nuclear structure, then we should find that the kinetic

energy T, decreases as r increases.
If we evaluate w for Slater type 2pm atomic orbitals with exponential factor &
one finds [77:

@pry | — 5 V? | 2pmy =— 5 8 {S— 8}, (14)

where § is the overlap integral between the two orbitals, and §” is proportional to
the overlap integral between a 2pm and a Slater-type 1pm orbital, as defined by
RoorHAANW [7]:

8 — % Cpm, | 1pm) . (15)

These overlap integrals have the form (p = £ R)

1
S=[1+g+%92+ﬁg3 ee
S =2[1+ 04 5o e (16)
so that
1l g3 4 2 1 3) p—
=25(1+9+EQ—1—5@)69~ (17)

For p less than 6.6 (for C—C bonds g is in the range 4 — 4.5) w is positive, which
means that the Hiickel scheme satisfies the virial theorem at least qualitatively,

T, decreasing with growing quantum number 7, i. e. with increasing K. However,
from expression (14) it is clearly inconsistent to put S = 0 in a Hiickel scheme and
yet not take w to be zero.

In the Wheland scheme we have for small values of m, that m, S <1 and
therefore we can approximate (13) by

Ty =1—m, {w—18) . (18)
7 has the value 3 £2, hence
. B2
o—t8 =48 (8 —29) = =g (g ee. (19)

w — 1 8 is now negative for all values of p, hence T, increases as the energy of the
orbitals increases — which is in violation of the virial theorem. If one calculates
the energies of z-molecular orbitals according to an independent electron scheme
without neglect of overlap, one finds as for the H, and HJ system, that if all
exponents are kept constant, then the kinetic energy associated with an orbital
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increases as the energy of the orbital increases. For H, and HZ this fault can be
remedied by contracting the bonding orbitals and expanding the antibonding.
Can one introduce a similar variation of m-molecular orbitals which will likewise
bring the system into line with the virial theorem ?

The simplest approach is to allow the exponent of the atomic orbitals & to
depend on the nature of the molecular orbital ¢, but still take all the ¢, to be
identical. The « and # will be functions of » and s and (9) will become

<1/)r ‘ H I’(})s> = N, N; [zcm Csy Ops T Z Z Cru C&:ﬂrsl . {20)

uovp J

However, since &5 and 85 are independent of 4 and » we have from (10) and (11)

Cpr | sy = 0. (21)

It follows that even if we allow for the size of the atomic orbitals @, to be a func-
tion of 7, the set of orbitals (8) will still be noninteracting.

In order to have some idea as to how much the orbital exponents should vary
with my we will assume that the & appropriate for a molecular orbital ¢, is a linear
function of m,

Er =&y —kmy . (22)

The expression for T, can then be expanded as a power series in k and to first
order one finds

— — —00 [ 2
Ty=Th—kme & + ° 7";—% (0f —40y—4) (23)

where i’. is the kinetic energy evaluated with & = 0 and g, = &, B. Taking &, =
1.625, B = 1.4 A one finds

f— 2

0 %" (1 + 0.178 my) (24)
and that the third term in (23) is small compared with the second. It follows that
we have

T, = %" L (0.089 & — E£,)my . 25)

We now evaluate & by making the decrease in kinetic energy for the excitation
from the highest occupied molecular orbital v, to the lowest vacant molecular
orbital ¢_, of aromatic hydrocarbons, equal to the energy of the 1L, band. A
linear correlation has been found between the energy of this band and the differ-
ence in Hiickel energies which has the form

ABops, = A + B (m—y — my) (26)

where B = 2.19-10* cm~! = 0.101 a.u. and where 4 is small [3].
Our calculated decrease in kinetic energy is

Ty~ Ty = (0.089 8 — k &) (my —m_,) 27)
which means that the virial theorem would hold for
£, (k—0.089 £,) = 0.101 (28)

where k= 0.207 .
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For example, for the 1L, band of naphthalene (36400 cm—!) one would have
excitation from a bonding orbital ¢, with & = 1.753 to an antibonding orbital
w_y, with £_; = 1.497.

The value of % is sufficiently small for the approximation of the Hiickel or
Wheland model of only considering nearest neighbour interactions to be valid.
For example, the most antibonding orbitals have m ~ 2.5 and for these we would
have & ~ 1.1.

A further conclusion is that any correlation which is found between Hiickel
energies and some observed quantity (e. g. spectroscopic energies, polarographic
reduction potentials, resonance energies) would still be valid for calculations
based on orbitals with variable exponents according to the scheme we have
suggested. For example, suppose one relates some observed energy to the difference
of energies calculated according to the Hiickel independent electron model. Then

Bops, = By — By = — (my — ’ms)ﬁ .
In the Wheland scheme this becomes for mS < 1
Eops, =— (my — ms) (5 — o 8)

and if the linear relationship is found between Eopg, and the Hiickel energies it will
also be found between Hgps, and the Wheland energies. Likewise if one expands
or, Br and Sy in the scheme we suggest,

xr = oy + g ke ; Br =Py + P kmy

Sy =8, + 8, km,
then
Eops, = — (my — my) (By — g Sy — 1 k)

plus smaller terms. In other words, the fact that there are good correlations
between some experimental results and theoretical energies based on fixed atomic
orbitals is not evidence against orbital expansion in the manner we have suggested.

Acknowledgement. We thank Prof. R. Daundel for many stimulating discussions and for

the kind hospitality extended to us. This work has been supported in part by the Schwei-
zerische Nationalfonds (Projekt Nr. 3745).

Appendix

The raison d’étre of the covalent bond has often been attributed, on the basis of the
“particle-in-a-box* model to a reduction in kinetic energy. Although the virial theorem shows

Table 1

T, T, T

Separate atoms 0.17 0.17 0.50
Ground state £ =1 0.15 0.09 0.39
Excited state & = 1 0.24 0.46 0.94
Ground state® & = 1.25 0.23 0.14 0.60
Excited states) £ = 0.90 0.21 0.41 0.81
aly = (2 — 28)%(15'“ — 1sp).

») Deduced by the variation method for E ~ 2 a.u.
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that this interpretation is incorrect®, the model has some validity as one can see by evaluating
the three components of the kinetic energy for the Hy wave function. Tab. 1 shows the values

of the component along the internuclear axis (7%) and at right angles to this (7 = T) for
both the ground and excited state wave functions, with and without variable &.

Thus along the internuclear axis the kinetic energy is less than for separate atoms, as one
would surmise from the “particle-in-a-box* model, but for the ground state this is offset when
orbital contraction is allowed for by an increase perpendicular to this axis. (Further details
shall be published elsewhere [1]).

* RUEDENBERG has given a very detailed account of the changes in kinetic and potential
energies which accompany bond formation {§].
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